Image partition regular matrices--bounded solutions and preservation of largeness

نویسندگان

  • Neil Hindman
  • Imre Leader
  • Dona Strauss
چکیده

A u × v matrix A is image partition regular provided that, whenever N is finitely colored, there is some ~x ∈ N with all entries of A~x monochrome. Image partition regular matrices are a natural way of representing some of the classic theorems of Ramsey Theory, including theorems of Hilbert, Schur, and van der Waerden. ∗This author acknowledges support received from the National Science Foundation (USA) via grant DMS-0070593.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Partition Regular Matrices: Solutions in Central Sets

A finite or infinite matrix A is image partition regular provided that whenever N is finitely colored, there must be some ~x with entries from N such that all entries of A~x are in the same color class. In contrast to the finite case, infinite image partition regular matrices seem very hard to analyze: they do not enjoy the closure and consistency properties of the finite case, and it is diffic...

متن کامل

Matrices centrally image partition regular near 0

Hindman and Leader first investigated Ramsey theoretic properties near 0 for dense subsemigroups of (R,+). Following them, the notion of image partition regularity near zero for matrices was introduced by De and Hindman. It was also shown there that like image partition regularity over N, the main source of infinite image partition regular matrices near zero are Milliken–Taylor matrices. But ex...

متن کامل

Infinite Partition Regular Matrices , II – Extending the Finite Results

A finite or infinite matrix A is image partition regular provided that whenever N is finitely colored, there must be some ~x with entries from N such that all entries of A~x are in the same color class. Using the algebraic structure of the StoneČech compactification βN of N, along with a good deal of elementary combinatorics, we investigate the degree to which the known characterizations of fin...

متن کامل

Universally Image Partition Regularity

Many of the classical results of Ramsey Theory, for example Schur’s Theorem, van der Waerden’s Theorem, Finite Sums Theorem, are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over N and other subsemigroups of (R,+). In this paper we introduce a new notion which we call universally image partition regular matri...

متن کامل

Partition Regularity without the Columns Property

A finite or infinite matrix A with rational entries is called partition regular if whenever the natural numbers are finitely coloured there is a monochromatic vector x with Ax = 0. Many of the classical theorems of Ramsey Theory may naturally be interpreted as assertions that particular matrices are partition regular. In the finite case, Rado proved that a matrix is partition regular if and onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 242  شماره 

صفحات  -

تاریخ انتشار 2002